傅里叶变换红外光谱仪(Fourier transform infrared,FTIR)是一种有效的化学物质分析方法,其光谱范围可以覆盖包括气体、液体和固体在内的各种材料的吸收分子光谱,在电子、化工、医学等领域均有着广泛的应用。随着技术的发展,已经出现了基于MEMS技术的芯片级FTIR光学光谱仪。这些应用中的绝大多数都需要精细的光谱分辨率,从而有助于区分不同的化学物质。
而对于所有的FTIR光谱仪(常规尺寸和微纳尺寸),光谱分辨率Δλ反比于镜面行程范围ΔX,即:Δ λ 〜1 /ΔX,使得实现精细光谱分辨率需要大的行程范围。而在MEMS芯片,ΔX不能超过芯片尺寸,因而片上FTIR光谱仪分辨率的受限于微镜的有限行程范围。
为了解决这个问题,提高MEMS片上FTIR光谱仪的光谱分辨率, Tarik Bourouina领导的团队引入了平行(或多核)光谱仪概念,在硅单芯片上集成多个干涉仪,共享MEMS执行器。此概念旨在克服光谱分辨率方面的限制,其中干涉仪具有互补的光程差(OPD)。干涉仪的移动镜机械耦合到同一执行器,芯片中的干涉仪会在测量的干涉图中扫描OPD的不同范围。每个干涉仪的干涉图由相应的检测器测量,采用进行信号处理以产生整体干涉图。使用相同的MEMS执行器,可以将OPD增加,从而相应地提高波长分辨率,使光谱分辨率提高约3倍。作者利用该片上MEMS FTIR成功用于温室气体大气成分检测和甲烷检测,成功测量并区分了甲烷吸收带。
该工作为基于芯片尺寸的FTIR-MEMS光谱仪的现场选择性和非接触式化学分析开辟了道路,可进一步扩展到中红外甚至远红外的波长范围。在环境监测(空气质量和土壤分析),精密农业和医学诊断上具有良好的应用前景。
图文展示1:MEMS片上FTIR光谱仪示意图
The parallel interferometers have a common actuator, where the moving mirrors are attached and spatially shifted to acquire the shifted interferograms.
图中描绘了由四个干涉仪组成的架构。每个干涉仪都有自己的分束器,固定镜,移动镜和检测器。四个干涉仪的四个移动镜耦合到相同的执行器,而镜的位置相对于彼此移动了增量ΔM,从而可以将分辨率提高到四倍。整个干涉图是四个互补干涉图的串联,与单个干涉仪相比,相应的光谱分辨率翻两番。
图文展示2:集成在同一芯片上的平行干涉仪设计和表征
Illustration of the fabricated design of the parallel interferometers integrated on the same chip.
使用集成在同一芯片上的四个干涉仪来提高光谱分辨率。描绘了具有四个干涉仪芯片的三维示意图。由于四个干涉仪中的每个干涉仪的整个行程2 L为360μm,因此总行程范围为1440μm。从理论上讲,将分辨率从33 cm -1提高到8.3 cm -1。
图文展示3:白光表征
White light measurement using the parallel interferometers.
用四个干涉仪测量白光源效果。
图文展示4:氪源光谱分析
Measured spectrum of the krypton source.
使用单个干涉仪和平行干涉仪分别测量氪源的发射光谱。平行干涉仪明显具有更高的分辨率。
图文展示5:测得的甲烷吸收光谱
Measured absorbance spectra of methane.
使用制成的装置进行了气体测量,以显示平行干涉仪辨别气体吸收带的能力。在白光源和光谱仪之间插入了一个含10%甲烷(CH4)的气室。使用平行干涉仪和单个干涉仪分析气室的含量。得到的吸光度对比曲线如上图所示。
Optical spectrometers enable contactless chemical analysis. However, decreasing both their size and cost appears to be a prerequisite to their widespread deployment. Chip-scale implementation of optical spectrometers still requires tackling two main challenges. First, operation over a broad spectral range extending to the infrared is required to enable covering the molecular absorption spectrum of a broad variety of materials. This is addressed in our work with an Micro-Electro Mechanical Systems (MEMS)-based Fourier transform infrared spectrometer with an embedded movable micro-mirror on a silicon chip. Second, fine spectral resolution Δλ is also required to facilitate screening over several chemicals. A fundamental limit states that Δλ is inversely proportional to the mirror motion range, which cannot exceed the chip size. To boost the spectral resolution beyond this limit, we propose the concept of parallel (or multi-core) FTIR, where multiple interferometers provide complementary optical paths using the same actuator and within the same chip. The concept scalability is validated with 4 interferometers, leading to approximately 3 times better spectral resolution. After the atmospheric contents of a greenhouse gas are monitored, the methane absorption bands are successfully measured and discriminated using the presented device.